If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+6x-12=0
a = 11; b = 6; c = -12;
Δ = b2-4ac
Δ = 62-4·11·(-12)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{141}}{2*11}=\frac{-6-2\sqrt{141}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{141}}{2*11}=\frac{-6+2\sqrt{141}}{22} $
| 50=1200+190x | | (10-2x)(24-2x)=0 | | 7u=18+5u | | 18=5v4v | | 3(2x-6+5=6(x-2)-1 | | 78=(4x+2) | | 3(2x-6+5=6(x-2-1 | | -6(7x3)=444 | | 13n+20=95 | | 2/7z=14 | | -13x+12=13x+12 | | 5e-18=-3(e+4) | | x-(-19)=30 | | -3(-4x-7)=117 | | x-(-7)=-11 | | -6(-7x-3)=444 | | 2/7d=14 | | -6.4=h+8.6 | | 12x+12+13x=12 | | 2x+14=2(x-3) | | 5x-7=-5x+3 | | x+(-16)=-17 | | 4^x-3=1/128 | | x-(-6)=3 | | (6d+2)−(3d−3)=0 | | 7(-5x+8)=-189 | | -2n=-n−10 | | 4z−1=11 | | 5(4x+9)=205 | | 10x+50=-1200+200x | | 8x-12=8x+6 | | 4^x13=1/128 |